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Abstract

We propose an utopia-tracking strategy to handle multiple conflicting objectives in model predictive control. The controller
minimizes the distance of its vector of objectives to that of the compromise solution: the point along the steady-state Pareto
front closest to the utopia point, where all the objectives are independently minimized. We establish conditions for asymptotic
stability and propose numerical implementation variants. One of the key advantages of the approach is that it avoids the
computation of Pareto fronts in real time environments. In addition, the approach can handle general objectives of different
nature such as economic and regularization objectives.

Key words: stability, predictive control, multiobjective, Lyapunov, utopia, Pareto, economic.

1 Introduction

Conflicting objectives arise naturally in model predictive
control (MPC). Trade-offs include tracking performance
and robustness or economic performance and sustain-
ability. Specific domains where reconciling objectives is
critical include chemical and energy systems [13,16,17].
A key technical challenge in dealing with multiple ob-
jectives is that the Pareto front is computationally ex-
pensive to build, particularly in multiple dimensions. In
addition, even when such a front is built, expert knowl-
edge is still needed to obtain a preferred solution. Tra-
ditional approaches such as weighting and expert sys-
tems are limited because system conditions and priori-
ties change under different operating modes. It is thus
desired to allow the MPC controller to handle trade-offs
automatically as conditions change.

Stability is another technical issue arising in multiob-
jective MPC. In [1], the MPC control action is cho-
sen among the set of Pareto optimal solutions based
on a time-varying, state-dependent decision criterion. In
[14], the control action minimizes the maximum of a fi-
nite number of objectives. In [11], the MPC controller
switches objectives depending on the value of the state
vector under stabilizing constraints. This type of expert
knowledge is also used in [9], where a lexicographic for-
mulation and logic are used to prioritize the objectives.
In these works, the multiple objectives are assumed to
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be Lyapunov functions, as in traditional MPC formula-
tions.

In this work, we propose a new strategy to handle mul-
tiple objectives. We call this utopia-tracking MPC. We
establish conditions for nominal asymptotic stability
and propose numerical implementation schemes. The
key idea is to minimize the distance of the cost function
to that of the steady-state utopia point (unreachable
point given by the intersection of the minima of the in-
dependent objectives). A key property of the controller
is that it can exploit the system dynamics to leave the
steady-state Pareto front and get closer to the utopia
point compared with any solution along the steady-state
Pareto front. Stability is ensured by using a terminal
constraint to a reachable point along the Pareto front.
Our proposed approach is novel because it can handle
general cost functions (e.g., economic, regularization,
tracking) that are required to satisfy only a Lipschitz
continuity property. In addition, the strategy does not
require the construction of the Pareto front, nor does it
require the selection of weighting factors.

The paper is structured as follows. We start with basic
definitions in Section 2. Definitions of steady-state mul-
tiobjective optimization are presented in Section 3. In
Section 4 we analyze the stability of the utopia-tracking
controller. In Section 5 we discuss computational issues.
We present a numerical study in Section 6 and close
in Section 7 with conclusions and directions for future
work.

2 Preliminaries

We consider a discrete-time dynamic system of the form
xk+1 = f(xk, uk), where xk ∈ ℜnx are the states and

Preprint submitted to Automatica 21 May 2012

vzavala
Text Box
Preprint ANL/MCS-P1912-0611




uk ∈ ℜnu are the controls. The mapping f : ℜnx×nu →
ℜnx is assumed to be Lipschitz in both arguments with
constant Lf ≥ 0 and is assumed to satisfy f(xs, us) = xs

at an equilibrium point (xs, us). The state and controls
are required to satisfy the constraints xk ∈ X , uk ∈ U
∀ k. The sets X ⊆ ℜnx and U ⊆ ℜnu are assumed to be
compact and to contain the equilibrium point. We define
the vector uT

N := [uT
0 , ..., u

T
N−1]

T ∈ ℜN×nu .

Definition 1 (Admissible Set) GivenN+1 time steps
k = 0, ..., N , the admissible set is given by

WN := {(x,uN ) |xk ∈ X , uk ∈ U , xN = xs}. (1)

We note that the admissible set depends on the equilib-
rium point and the horizon length. The set of admissible
states ZN is given by

ZN =: {x | ∃ uN s.t. (x,uN ) ∈ WN}. (2)

Definition 2 (K-Function [8]) A continuous function
α : ℜ → ℜ is called a K function if α(s) = 0 for s = 0
and α(s) > 0 for s > 0, and it is strictly increasing.

The p-norm ∥ · ∥p with p ≥ 1 has the form ∥s∥p =

(
∑ns

i=1 |si|p)
1
p for vector s ∈ ℜns with elements

si, i = 1, ..., ns. We have that ∥s∥p = 0 if s = 0 and
∥s∥p > 0 otherwise for all p ≥ 1. In addition, the
p-norm is Lipschitz continuous with constant equal
to 1. Well-known norms are the L1,L2 and the L∞
norms: ∥s∥1 =

∑ns

i=1 |si|, ∥s∥2 =
√∑ns

i=1(si)
2, and

∥s∥∞ = max{|s1|, ..., |sns |}.

Definition 3 (Lyapunov Function [10]) A continu-
ous function V (·) : ℜnx → ℜ is called a Lyapunov func-
tion if there exist an invariant set X and K functions
αL(·), αU (·), and ∆α(·) such that, ∀x ∈ X ,

αL(∥x∥p) ≤ V (x) ≤ αU (∥x∥p) (3a)

∆V (x) ≤ −∆α(∥x∥p). (3b)

3 Steady-State Multiobjective Optimization

Consider the multiobjective steady-state problem

min
x,u

[Φ1(x, u),Φ2(x, u), ...,ΦM (x, u)] (4a)

s.t. x = f(x, u), x ∈ X , u ∈ U , (4b)

where the objective (cost) functions Φi : ℜnx×nu →
ℜ, i ∈ M := {1, ...,M} are assumed to be Lipschitz
continuous in both arguments. We define the objective
vector as

Φ(·, ·)T := [Φ1(·, ·),Φ2(·, ·), ...,ΦM (·, ·)]T , (5)

with Lipschitz constant LΦ. No further assumptions are
needed about the properties of these functions. This is an
important advantage over existing multiobjective MPC
implementations [14,1]. The cost functions can be con-
flicting, so one cannot be minimized without increasing
the other. This situation gives rise to the concept of a
Pareto solution.

Definition 4 (Steady-State Pareto Solution [2])
A feasible point (xp, up) for the multiobjective problem
(4) is said to be Pareto optimal if and only if there ex-
ists no other feasible point (x, u) such that Φi(x, u) ≤
Φi(xp, up), ∀i ∈ M, and Φi(x, u) < Φi(xp, up) for at
least one index i ∈ M.

The family of Pareto solutions forms the so-called Pareto
front, which represents a limiting curve of performance
in the cost space. In this work, we will not follow the
traditional approach of constructing the Pareto front
and then choosing a suitable point along it [9]. The first
reason is that this seems impractical in real-time envi-
ronments. The second reason is that expert knowledge
is needed to select the point and the selection criterion
might need to be changed as the conditions of the sys-
tem change (e.g., prices). We overcome some of these
limitations by following an utopia-tracking approach.

Definition 5 (Steady-State Utopia Point [6]) The
steady-state utopia point is a point given by the solution

(xL,s
i , uL,s

i ) with coordinates Φi(x
L,s
i , uL,s

i ), i ∈ M in
the cost space. The coordinates are given by the solution
of problems i ∈ M,

min
x,u

Φi(x, u) s.t. x = f(x, u), x ∈ X , u ∈ U . (6)

The utopia cost vector will be denoted as ΦL,s. The
utopia point is unattainable because the costs are con-
flicting; however, it can still be used as a reference point.
For instance, one can compute the closest point along
the Pareto front to the utopia point (also known as the
compromise solution.)

Definition 6 (Steady-State Compromise Solu-
tion.) The steady-state compromise solution is a point
(xs, us) with cost Φ(xs, us) given by the solution of the
minimum distance problem

min
x,u

∥Φ(x, u)− ΦL,s∥p s.t. x = f(x, u), x ∈ X , u ∈ U .
(7)

The individual costs of the compromise solution are
given by Φi(x

s, us), i ∈ M. We denote the above
problem as the steady-state utopia-tracking problem.
A schematic representation of the utopia-tracking ap-
proach is presented in Figure 1. Note that for the
single-objective case, the compromise solution and the

utopia point coincide so that Φ1(x
s, us) = ΦL,s

1 . The
choice of the compromise solution as equilibrium point
is not strictly necessary. Other choices include the
Kalai-Smorodinsky solution, the egalitarian solution,
and the Nash solution [5]. The compromise solution is
attractive, however, because it can be easily computed.

4 Multiobjective Predictive Control

We start by making an assumption about controllability
[3,7].

Definition 7 (Weak Controllability.) There exists a
K-function γ(·) such that for every x ∈ X , there exists
(x,uN ) ∈ WN such that
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Compromise

Utopia

Pareto Front

Fig. 1. Schematic representation of Pareto front, compromise
solution, and utopia point.

N−1∑
k=0

∥uk − us∥p ≤ γ(∥x− xs∥p). (8)

Lemma 1 Consider the general MPC problem

min
xk,uk

N−1∑
k=0

φ(xk, uk, x
s, us) (9a)

s.t. xk+1 = f(xk, uk), k ∈ N− (9b)

x0 = xℓ (9c)

xT = xs (9d)

xk ∈ X , uk ∈ U , k ∈ N . (9e)

Here, ℓ is the current time instant. The solution of this
problem is given by the vector uT

ℓ := [uT
0 , ..., u

T
N−1] from

where the control uℓ := u0 is injected into the system.
We have N := {0, ..., N} and N− := N \ {N}. The
cost φ : ℜnx×nu → ℜ is assumed to be non-negative
and Lipschitz continuous such that there exists L ≥ 0
satisfying

φ(x, u, xs, us) ≤ L(∥x− xs∥p + ∥u− us∥p). (10)

If weak controllability and Lipschitz continuity of the sys-
tem f(·, ·) hold, then there exists aK-function αU (·) such
that for all (x,u) ∈ WN ,

N−1∑
k=0

φ(xk, uk, x
s, us) ≤ αU (∥x− xs∥p). (11)

Proof: The proof is an extension of the upper bounding
strategy used in [3,7]. Applying the Lipschitz property
assumed, the system is propagated forward in time and
substituted in the objective. Under Lipschitz continuity
of the system the result follows. 2

We propose three strategies to deal with multiple ob-
jectives. In the first strategy (state-tracking MPC), the
controller tracks directly the state of the compromise
solution. In the second strategy (cost-tracking MPC),
the controllers track the compromise solution in the cost
space. The third strategy (utopia-tracking MPC) tracks
the steady-state utopia point in the cost space using the
compromise solution as terminal condition. We will see
that tracking the costs is advantageous because it is pos-
sible to leave the Pareto front during the dynamic tran-
sition and get closer to the steady-state utopia point,
thus maximizing economic performance.

4.1 State-Tracking MPC

We consider the state-tracking (ST) problem

min
xk,uk

N−1∑
k=0

∥xk − xs∥p + ∥uk − us∥p (12a)

s.t. (9b)− (9e). (12b)

The control law resulting from the closed-loop solution
of this problem is uℓ = hST (xℓ), and the optimal cost is
used as the value function VST (xℓ). Stability results for
this controller are well known.

Theorem 2 (Stability of Tracking MPC.) The
minimum-distance steady-state point xs under the con-
trol law hST (xℓ) given by the tracking MPC formulation
(12) is an asymptotically stable equilibrium with region
of attraction ZN .

We note that the state-tracking MPC does not reach the
steady-state point in an economically optimal manner.
We interpret economic performance as the distance to the
utopia point since this is the limiting point. The proposed
multiobjective formulations of the following subsections
can be used to avoid this limitation.

4.2 Cost-Tracking MPC

To address the limitations of tracking MPC in deal-
ing with multiple objectives, we first propose the cost-
tracking (CT) MPC controller:

min
xk,uk

N−1∑
k=0

∥Φ(xk, uk)− Φ(xs, us)∥p (13a)

s.t. (9b)− (9e). (13b)

The closed-loop control law is given by uℓ = hCT (xℓ)
with value function is VCT (xℓ). The objective of the con-
troller is to minimize the cost distance to the compro-
mise steady-state solution. We will now prove that the
value function can be used as a Lyapunov function to
establish stability.

Assumption 1 There exists a K-function αL(·) such
that ∥Φ(x, u)− Φ(xs, us)∥p ≥ αL(∥x− xs∥p).

Theorem 3 Under weak controllability andAssumption
1, the steady-state xs under the control law hCT (xℓ) given
by the multiobjective MPC formulation (13) is an asymp-
totically stable equilibrium point with region of attraction
ZN .

Proof: From Assumption 1, the balue function is
bounded from below by a K-function. Under weak con-
trollability, Lemma 1 holds immediately with L = LΦ.
Consequently, the value function is bounded from above
by a K-function. To show that the value function is
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nonincreasing, we establish

VCT (xℓ+1)− VCT (xℓ)

=

ℓ+N∑
k=ℓ+1

∥Φ(xk, uk)− Φ(xs, us))∥p

−
ℓ+N−1∑
k=ℓ

∥Φ(xk, uk)− Φ(xs, us))∥p

≤ −∥Φ(xℓ, uℓ)− Φ(xs, us)∥p
≤ −αL(∥xℓ − xs∥p).

The last inequality also follows from Assumption 1. The
proof is complete. 2

A key property of the cost-tracking approach is that the
nature of the cost functions does not affect the upper
bound property. Assumption 1 is the most restrictive as-
sumption we have found that requires the stage cost to
have a unique minimizer at (xs, us). The lower bound
condition can be guaranteed to hold locally under the
satisfaction of the so-called strong second order condi-
tion. This condition requires that the optimal solution
be well defined and locally unique. In other words, the
cost is zero only at x = xs and strictly positive and non-
decreasing for nonzero ∥x−xs∥p. In [7], the authors pro-
pose to add a regularization term for the case in which
the condition does not hold because of ill-conditioning
of the cost function.

4.3 Utopia-Tracking MPC

We now propose the utopia-tracking (UT) formulation
that minimizes directly the distance to the utopia point:

min
xk,uk

N−1∑
k=0

∥∥Φ(xk, uk)− ΦL,s
∥∥
p

(14a)

s.t. (9b)− (9e). (14b)

The closed-loop control law is given by uℓ = hUT (xℓ),
and the value function is VUT (xℓ). Since this controller
minimizes the distance to the utopia directly, it can
exploit the system dynamics to leave the steady-state
Pareto front and get closer to the utopia point. The main
technical difficulty in establishing stability of the UT
controller is that the value function VUT (x) is nonzero
at x = xs since the utopia point ΦL,s is unreachable.
Consequently, the value function does not qualify as a
Lyapunov function. To establish stability for this for-
mulation, we follow the approach proposed in [3]. We
define the partial Lagrange function of the steady-state
utopia-tracking problem (7):

L(x, u, λ) := ∥Φ(x, u)−ΦL,s∥p+(x− f(x, u))Tλ, (15)

where λ ∈ ℜnx is a Lagrange multiplier. At xs, us, λs

we have that the partial Lagrange function reaches a
minimum given by L(xs, us, λs) = ∥Φ(xs, us) − ΦL,s∥
since 0 = xs − f(xs, us). With this, an artificial origin
is introduced if (x, u) = (xs, us). We need the following
assumption.

Assumption 2 (StrongDuality.) There exists a mul-
tiplier λs such that the pair us, xs uniquely solves

min
x,u

L(x, u, λs), s.t. (x, u) ∈ X × U . (16)

From strong duality we have that L(x, u, λs) −
L(xs, us, λs) ≥ 0, ∀(x, u) ∈ X × U . We also have that
there exists a K-function αL(·) such that

L(x, u, λs)− L(xs, us, λs) ≥ αL(∥x− xs∥p). (17)

We can now define the utopia-tracking MPC problem
(14) in terms of the partial Lagrange function:

min
uk

N−1∑
k=0

(L(xk, uk, λ
s)− L(xs, us, λs)) (18a)

s.t. (9b)− (9e). (18b)

As shown in [3] (see Lemma 2), formulations (18) and
(14) are equivalent. Consequently, we can now use the
optimal objective value of (18) as the value function
VUT (xℓ).

Theorem 4 Under weak controllability and strong du-
ality, the steady-state xs under the control law hUT (xℓ)
given by utopia-tracking MPC formulation (18) is an
asymptotically stable equilibrium point with region of at-
traction ZN .

Proof: From strong duality, the value function
is bounded from below by a K-function. We now
prove that it is bounded above. From strong duality

we have that
∑N−1

k=0 L(xk, uk, λ
s) − L(xs, us, λs) =∑N−1

k=0 |L(x, u, λs)− L(xs, us, λs)|. We also have

|L(x, u, λs)− L(xs, us, λs)|
=
∣∣∥Φ(x, u)− ΦL,s∥p + (x− f(x, u))Tλ

−
(
∥Φ(xs, us)− ΦL,s∥p + (xs − f(xs, us))Tλs

)∣∣
≤
∣∣∥Φ(x, u)− ΦL,s∥p − ∥Φ(xs, us)− ΦL,s∥p

∣∣
+ |(x− f(x, u))Tλs − (xs − f(xs, us))Tλs|

≤ (LΦ + (Lf + 1)∥λs∥q) (∥x− xs∥p + ∥u− us∥p) .

Where the last inequality follows from Hölder’s inequal-
ity, ∥·∥q is the q-norm, and 1/p+1/q = 1. Consequently,
Lemma 1 holds with L = LΦ + (Lf + 1)∥λs∥q. To show
that value function is nonincreasing, we establish the
following:

VUT (xℓ+1)− VUT (xℓ)

=
ℓ+N∑

k=ℓ+1

(L(xk, uk, λ
s)− L(xs, us, λs))

−
ℓ+N−1∑
k=ℓ

(L(xk, uk, λ
s)− L(xs, us, λs))

≤ − (L(xℓ, uℓ, λ
s)− L(xs, us, λs))

≤ −αL(∥x− xs∥p).

The last inequality follows from strong duality. The
proof is complete. 2
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The most restrictive assumption that we have found is
strong duality, which is difficult to check in practice. This
property guarantees that the Lagrange function has a
unique minimizer at (xs, us). In [7] the authors propose
to add a regularization term to the cost function to pro-
mote local uniqueness.

5 Computational Considerations

We highlight that the coordinates of the utopia point can
be computed off-line and in parallel. Consequently, this
computation does not involve additional on-line costs
for the controller. We also note that the UT controller
does not need to compute the entire Pareto front, which
is a significant computational advantage over existing
multiobjective approaches.

The choice of the norm has implications on compu-
tational performance. For instance, the L2 norm is
smooth, whereas L1 and L∞ are not. Another issue is
that the cost functions can have drastically different
values. The solution of the individual problems (6) yield

upper bounds ΦU,s
i , i ∈ M, given by the maximum

of the costs not minimized. Consequently, we can use
these to scale the controller cost without affecting its
properties. The scaled L2 problem has the form

min
xk,uk

N−1∑
k=0

∥∥∥∥Φ(xk, uk)− ΦL,s

ΦU,s − ΦL,s

∥∥∥∥
2

(19a)

s.t. (9b)− (9e). (19b)

The square root in the objective function can introduce
numerical ill-conditioning because the first derivative di-
verges as the argument approaches zero. To deal with
this problem, we consider the following formulation:

min
xk,uk

N−1∑
k=0

zk (20a)

s.t. (9b)− (9e) (20b)

z2k =
∑
i∈M

(
Φi(xk, uk)− ΦL,s

i

ΦU,s
i − ΦL,s

i

)2

(20c)

zk ≥ 0, k ∈ N−, (20d)

which is better-conditioned. An alternative is to mini-
mize the squared norm. To reformulate the L1 variant,
we introduce variables y+k,i, y

−
k,i ≥ 0, i ∈ M, and de-

fine the absolute value y+k,i−y−k,i =
Φi(xk,uk)−ΦL,s

i

ΦU,s
i

−ΦL,s
i

. After

scaling we have

min
xk,uk

N−1∑
k=0

∑
i∈M

(y+k,i + y−k,i) (21a)

s.t. (9b)− (9e) (21b)

y+k,i − y−k,i =
Φi(xk, uk)− ΦL,s

i

ΦU,s
i − ΦL,s

i

(21c)

y+k,i, y
−
k,i ≥ 0, k ∈ N−, i ∈ M, (21d)

where
∑N−1

k=0

∥∥∥Φ(xk,uk)−ΦL,s

ΦU,s−ΦL,s

∥∥∥
1
=
∑N−1

k=0

∑
i∈M(y+k,i +

y−k,i). We can reformulate the L∞ variant as

min
xk,uk

N−1∑
k=0

ηk + ρ

N−1∑
k=0

∑
i∈M

(y+k,i + y−k,i) (22a)

s.t. (9b)− (9e) (22b)

y+k,i − y−k,i =
Φi(xk, uk)− ΦL,s

i

ΦU,s
i − ΦL,s

i

(22c)

y+k,i + y−k,i ≤ ηk, k ∈ N−, i ∈ M, (22d)

where
∑N−1

k=0

∥∥∥Φ(xk,uk)−ΦL,s

ΦU,s−ΦL,s

∥∥∥
∞

=
∑N−1

k=0 ηk and ρ > 0

is a penalty parameter.

6 Numerical Case Study

We simulated the performance of the three proposed
controllers using a free-radical polymerization reactor
[12]. The dynamic model has the form

Ċm(t) = −(kp + kfm)Cm(t)P0(t) +
F

V
(Cm,in − Cm(t))

(23a)

Ċi(t) = −kiCi(t) +
Fi(t)

V
Ci,in − F

V
Ci(t) (23b)

Ḋ0(t) = (0.5ktc + ktd)P0(t)
2

+ kfmCm(t)P0(t)−
F

V
D0(t) (23c)

Ḋ1(t) = Mm(kp + kfm)Cm(t)P0(t)−
F

V
D1(t). (23d)

Here, Cm(t) is the monomer concentration, Ci(t) is the
initiator concentration,D0(t) is the zeroth moment, and
D1(t) is the first moment. These are the states. The con-
trol variable is the initiator flowrate Fi(t), and P0(t) =√
2ηikiCi(t)/(ktd + ktc). The parameter values can be

found in [12]. We assume that it is desired to maximize
conversion Φ1(t) = X(t) = (Cm,in−Cm(t))/Cm,in while
simultaneously maximizing the profit Φ2(t) = 2500 +
3500X(t)0.6 + 9 × 10−4Mw(t)

0.65 − 3000Fi(t)
0.5 where

Mw(t) = D1(t)/D0(t) is the polymer molecular weight.
We converted the model into discrete time form using
Euler discretization and solved the resulting problems
using IPOPT [15]. All the controller implementations
are available at http://www.mcs.anl.gov/~vzavala.
Since the L∞ formulation proved to be computationally
more robust, it was used in all the experiments. We veri-
fied that the solutions were locally unique by monitoring
the second-order conditions with IPOPT.

We tested the ST, CT, and UT controllers under two ini-
tial points at the extremes of the Pareto front. The two-
dimensional cost trajectories for the CT and UT con-
trollers are presented in Figure 2. In the transition from
the lower end of the Pareto front, both controllers leave
the Pareto front because they can exploit the system
dynamics to get to the compromise solution. The UT
controller is able to get much closer to the utopia point
during the transition, and then converges to the compro-
mise point. In other words, UT has much better perfor-
mance than the CT counterpart. In the transition from
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Fig. 2. Phase plot of utopia-tracking (gray line) and cost–
tracking controllers (dotted line). The utopia point is the
large dot.
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Fig. 3. Time evolution of the distance of the controllers tra-
jectories to the utopia point.

the second initial point, the difference in performance is
less pronounced. The reason is that the controllers are
physically unable to visit the region surrounding the up-
per end of the Pareto front. This situation suggests that
performance improvements depend on the initial state
of the system and on the shape of the Pareto front. We
also found that ST is stable but its performance is not
competitive. In Figure 3 we present the time evolution
of the distance for the three controllers to the utopia
point (∥Φ − ΦL,s∥∞). The performance of UT is supe-
rior, while the poorest performance is that of ST. The
distance for UT to the utopia point is negligible during
the dynamic transition and then it settles at it reaches
the utopia point. The accumulated distances over time
for UT, CT, and ST are 1.49 × 104, 1.69 × 104, and
2.25× 104, respectively. The performance improvement
of UT over ST is 33%.

7 Conclusions and Future Work

We proposed an utopia-tracking strategy to handle mul-
tiple conflicting objectives in model predictive control,
established conditions for nominal asymptotic stability,
and proposed numerical variants. The approach can han-
dle general objectives that are required to satisfy only
a Lipschitz continuity property. In addition, it does not
require the construction of the Pareto front and avoids
the need of adjusting weights. Directions of future work
include stability under different terminal conditions and
in the face of uncertainty. In addition, we plan to ex-
plore strategies to enlarge the region of attraction. Re-
cent work presented in [4] can be extended to this case.
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